丁香五月天婷婷久久婷婷色综合91|国产传媒自偷自拍|久久影院亚洲精品|国产欧美VA天堂国产美女自慰视屏|免费黄色av网站|婷婷丁香五月激情四射|日韩AV一区二区中文字幕在线观看|亚洲欧美日本性爱|日日噜噜噜夜夜噜噜噜|中文Av日韩一区二区

您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
此為臨時鏈接,僅用于文章預覽,將在時失效
人工智能 正文
發(fā)私信給AI科技評論
發(fā)送

0

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

本文作者: AI科技評論 2017-11-16 14:03
導語:雷鋒網按:本文為Yann Lecun在CoRL 2017大會上做的演講的概述,雷鋒網作為受邀媒體參加了CoRL大會。

雷鋒網按:本文為Yann Lecun在CoRL 2017大會上做的演講的概述,雷鋒網作為受邀媒體參加了CoRL大會,所有資料來自于官方公開資源整理。

Lecun為Facebook AI研究院院長,他同時也是紐約大學的終身教授。他因著名的卷積神經網絡(CNN)相關的工作而被人稱為CNN之父。在演講中,Lecun回顧了其早期利用神經網絡用于機器人的研究做了一個基本的介紹,在當時Lecun的論文被RSS拒稿,然而今天CNN卻在人工智能領域大放異彩,新技術的發(fā)展往往是螺旋式的發(fā)展,然而卻又能帶來驚人的變化,實在難以預料。

接著Lecun重點講解了他的成名作——卷積神經網絡(CNN),并分析了阻礙人工智能繼續(xù)前進的因素,在他看來,現(xiàn)在的人工智能系統(tǒng)距離真正的人工智能相去甚遠,要想讓機器像人或動物一樣有效學習,需要更好地就無監(jiān)督學習上繼續(xù)研究,并討論了利用對抗網絡進行無監(jiān)督學習的重要性。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Lecun的演講標題是:《機器該如何像動物和人類一樣有效學習》?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Lecun先從今年9月的CCN(Cognitive Computational Neuroscience,認知計算神經科學)大會上,MIT的認知計算專家Josh Tennenbaum的一句話說起:我們現(xiàn)在看到的所有AI系統(tǒng)都不是真正的AI。這是因為,大腦的學習效率比我們目前所有的機器學習方法效率都要高:監(jiān)督學習需要大量的范例,增強學習需要上百萬次試錯,這也是我們的機器人無法像貓或老鼠一樣靈活、以及無法造出擁有常識的對話系統(tǒng)的原因。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

我們可以通過強化學習訓練機器識別如桌子、凳子、夠、汽車、飛機等實例,只要我們有足夠的計算能力和訓練樣本,機器業(yè)能識別出之前未見過的東西。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Lecun還比較了傳統(tǒng)的模式識別方法、改進的模式識別方法、深度學習的不同。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

從2013年到2017年,從VGG到DenseNet(這也是Facebook用于圖像識別的網絡結構),深度卷積神經網絡變得越來越深,識別效果也變得越來越好。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

而在Lecun將機器學習應用于機器人的研究在2003年,當時DARPA找到Lecun,通過模仿學習進行避障的研究。2005年,Lecun將論文投給了第一屆RSS(機器人領域的頂級學術會議之一),但很不幸的被拒了,隨后Lecun將論文轉投當年的NIPS,論文被收錄發(fā)表。而這一研究的階段性成果也打動了DARPA,并催生了之后的DARPA LAGR項目(這么說來,Lecun在機器人方面的研究天賦是不是被RSS耽誤了呢)。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

DARPA LAGR:一個將機器學習應用于地面機器人、基于感知的自主導航項目。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Lecun在機器人上使用了一個叫ComNet的網絡,在當時算是非常前衛(wèi)的做法。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

當時的識別效果,在地圖上設定終點后可自主進行路線規(guī)劃。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

然而,每秒只能進行一幀圖像的識別,無法有效躲避突然出現(xiàn)的行人。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

若干年后的另一個研究,將視頻中的場景識別為不同種類,如道路、汽車、建筑等。當時還缺乏對應的數(shù)據(jù)集,需要進行大量的標注。由于缺乏數(shù)據(jù),這并不是卷積神經網絡的強項,只是相比其他方法來說算是一個不錯的選擇而已(直到2012年ImageNet上的突破)。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

2012年在FPGA上跑到20幀,這也推動了之后如Mobileye和NVIDIA在無人駕駛上的研究。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

其他的應用,如將Mask R-CNN用于實例分割;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Mask R-CNN在COCO數(shù)據(jù)集上的圖像分割結果。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

以及姿態(tài)預估的結果;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

3D語義識別;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

用于翻譯;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

視覺推理中的推斷和執(zhí)行(雖然Lecun懟過Jurgen,但不得不說LSTM還是很有用的嘛);

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

諸多的用促成了FAIR的諸多開源項目(Lecun說,這里大多數(shù)項目自己沒有參與,他只是在說別人的研究工作);

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

展望未來,Lecun認為阻礙人工智能繼續(xù)前進的因素在于目前我們打開AI的方式不正確,像人或動物都無需大量的標識數(shù)據(jù)或者大量試錯;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

這當中的差別在于“常識”,就是通過想象來填補空白的能力,這也是某種形式的非監(jiān)督學習。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

大多數(shù)人或動物的學習方式都是非監(jiān)督學習。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

人類具有通過觀察形成常識的能力,例如“Josh拿起包離開了房間”,我們人類很容易理解相應的行為,但很難教機器去理解這一系列動作;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

從認知科學的角度,人類在嬰兒時期學習到各種概念的時間表;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

為什么下需要進一步發(fā)展非監(jiān)督學習?這是由于用于訓練一個大的學習機器的必要樣本量取決于我們要求它能預測多少信息,你對機器要求越多,所需要的數(shù)據(jù)也越多。在人類大腦中有10^14個神經元觸突,而人的一生大概有10^9秒,這意味著在人類大腦這個系統(tǒng)中參數(shù)遠遠大于數(shù)據(jù)量,而機器想要趕上人類,必須模仿人類的非監(jiān)督學習方式。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

三種不同學習方式的比較。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

然后Lecun展示了他著名的“蛋糕”理論。“真正的”強化學習好比蛋糕上的櫻桃,監(jiān)督學習好比蛋糕上的糖衣,而蛋糕本身是非監(jiān)督學習(預測學習)。這里Lecun也表示,這一比喻對做強化學習的兄弟可能不太友好——“Because the cherry is not optional”。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

在Lecun看來,真正的強化學習是很難在現(xiàn)實世界中應用的,一不小心出錯就會釀成大禍,還是玩玩游戲就好了。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

比如說,打星際。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

經典的強化學習框架Dyna:“現(xiàn)在大腦中推演然后再行動”;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

以及經典的基于模型的最優(yōu)控制理論。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Lecun進行了概括:未來的AI革命必然是非監(jiān)督學習。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

人工智能系統(tǒng)的兩個重要組成部分:一個會學習的Agent和一個不變的目標函數(shù)。Agent從世界中感知,做實際決策,再感知,再做決策………通過這樣一個不斷循環(huán)迭代的過程,達到長期的期望損失最小化的目標。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

預測+規(guī)劃=推理,而通過最小化預測損耗,可以使Agent進一步優(yōu)化決策過程。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

對應的迭代式的學習方式和優(yōu)化如上圖所示。這種非監(jiān)督學習方式也是人類諸如學開車等技能獲得的重要方式,因為人們會推演行為帶來的后果,并不斷調整達到最優(yōu)。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

基于卷積網絡的PhysNet,可預測物體的掉落軌跡;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Lecun的學生不久前做的另一個前向模型,可模擬飛船在星際旅行中的運動規(guī)劃。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

關于問答與對話系統(tǒng)中的預測模型。Lecun稱要預測未來,你首先要記住過去,因而需要將記憶引入神經網絡中,即所謂的記憶網絡(Memory Network)。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

以及關于記憶網絡的若干模型。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

端到端的記憶網絡。你之前告訴機器的東西會被儲存起來,并在之后詢問提及時被激活,這一方式可以用于構建對話系統(tǒng),而且對話系統(tǒng)和機器人與世界進行交互的過程有著諸多相似之處;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

如果要設計一個好的對話系統(tǒng),需要對對話有良好的預測能力。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

在這方面的一些研究。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

然后Lecun提到了在非確定條件下的預測方式(非監(jiān)督學習)。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

簡單來說就是學習一個能量函數(shù),使得其在數(shù)據(jù)流形狀上具有較低的值,而在其他地方具有較高的值。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

即在希望的輸出上壓低能量值,在其他地方提高能量值。但是我們如何確定什么地方應該提高呢?這當有八、九種方法,比如蒙特卡洛方法等。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

而對抗網絡也是新的處理這一問題的有效手段。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

到具體的問題,最困難之處在于基于不確定性的預測。例如放開一支筆,讓系統(tǒng)回答筆半秒鐘后會導向何方,系統(tǒng)感知到的輸入X只是世界里真實分布的一個采樣,假設其由某個隱變量Z而決定,如果Z不同,預測的結果Y也會不一樣,即便是我們人類也很難預測Y在空間中的帶狀分布。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

對抗學習:由生成器來決定讓哪些點的能量值變高或者變低;

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

基于能量的生成對抗網絡在ImageNet上訓練的例子。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

我們同樣還可以將生成對抗網絡應用在視頻預測上。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

我們是否可以訓練機器像我們大腦一樣,對未來進行預測呢?通過生成對抗網絡,我們已經取得了一些進展,但這個問題仍然遠遠未能解決。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

用生成對抗網絡預測未來5幀的例子總體來說不錯,但如果我們預測未來50幀的狀態(tài)就要大打折扣了。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Lecun最近的研究:視頻預測的語義分割

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

該研究在如自動駕駛等領域將會有不錯的應用,例如預測0.5秒后行人或其他車輛的狀態(tài);

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

Lecun最新的研究:錯誤編碼網絡(將在明天發(fā)布到Arxiv上,雷鋒網也將進一步跟進。)

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

在一個測試集上的例子:用機器手臂戳物體并預測其位置。

Lecun稱,對未來的預測是AI系統(tǒng)的一個重要環(huán)節(jié),而這一問題尚未得到解決。生成對抗網絡為解決這一問題提供了一個思路,同時他也期待有其他更好的方法來解決這一問題。


雷峰網原創(chuàng)文章,未經授權禁止轉載。詳情見轉載須知。

Yann Lecun CoLR演講全解讀:機器該如何像動物和人類一樣有效學習?

分享:
相關文章
當月熱門文章
最新文章
請?zhí)顚懮暾埲速Y料
姓名
電話
郵箱
微信號
作品鏈接
個人簡介
為了您的賬戶安全,請驗證郵箱
您的郵箱還未驗證,完成可獲20積分喲!
請驗證您的郵箱
立即驗證
完善賬號信息
您的賬號已經綁定,現(xiàn)在您可以設置密碼以方便用郵箱登錄
立即設置 以后再說