0
雷鋒網(wǎng)按:本文作者張慶恒,原載于作者個人博客,雷鋒網(wǎng)經(jīng)授權(quán)發(fā)布。
本文通過簡單kaldi源碼,分析DNN訓練聲學模型時神經(jīng)網(wǎng)絡的輸入與輸出。在進行DNN訓練之前需要用到之前GMM-HMM訓練的模型,以訓練好的mono模型為例,對模型進行維特比alignement(對齊),該部分主要完成了每個語音文件的幀到 transition-id 的映射。
不妨查看對齊后的結(jié)果:
$ copy-int-vector "ark:gunzip -c ali.1.gz|" ark,t:- | head -n 1
speaker001_00003 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 15 15 15 18 890 889 889 889 889 889 889 892 894 893 893 893 86 88 87 90 89 89 89 89 89 89 89 89 89 89 89 89 89 89 194 193 196 195 195 198 197 386 385 385 385 385 385 385 385 385 388 387 387 390 902 901 901 904 903 906 905 905 905 905 905 905 905 905 905 905 905 914 913 913 916 918 917 917 917 917 917 917 752 751 751 751 751 751 754 753 753 753 753 753 753 753 753 756 755 755 926 925 928 927 927 927 927 927 927 927 930 929 929 929 929 929 929 929 929 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 18
對于一個訓練語音文件speaker001_00003,后面的每一個數(shù)字標示一個transition-id,同時每個數(shù)字對應一個特征向量,對應的向量可以 copy-matrix 查看,可參考特征提取相關(guān)內(nèi)容,鏈接如下:
同樣查看 transition-id:
$ show-transitions phones.txt final.mdl
Transition-state 1: phone = sil hmm-state = 0 pdf = 0
Transition-id = 1 p = 0.966816 [self-loop]
Transition-id = 2 p = 0.01 [0 -> 1]
Transition-id = 3 p = 0.01 [0 -> 2]
Transition-id = 4 p = 0.013189 [0 -> 3]
Transition-state 2: phone = sil hmm-state = 1 pdf = 1
Transition-id = 5 p = 0.970016 [self-loop]
Transition-id = 6 p = 0.01 [1 -> 2]
Transition-id = 7 p = 0.01 [1 -> 3]
Transition-id = 8 p = 0.01 [1 -> 4]
Transition-state 3: phone = sil hmm-state = 2 pdf = 2
Transition-id = 9 p = 0.01 [2 -> 1]
Transition-id = 10 p = 0.968144 [self-loop]
Transition-id = 11 p = 0.01 [2 -> 3]
Transition-id = 12 p = 0.0118632 [2 -> 4]
Transition-state 4: phone = sil hmm-state = 3 pdf = 3
Transition-id = 13 p = 0.01 [3 -> 1]
Transition-id = 14 p = 0.01 [3 -> 2]
Transition-id = 15 p = 0.932347 [self-loop]
Transition-id = 16 p = 0.0476583 [3 -> 4]
Transition-state 5: phone = sil hmm-state = 4 pdf = 4
Transition-id = 17 p = 0.923332 [self-loop]
Transition-id = 18 p = 0.0766682 [4 -> 5]
Transition-state 6: phone = a1 hmm-state = 0 pdf = 5
Transition-id = 19 p = 0.889764 [self-loop]
Transition-id = 20 p = 0.110236 [0 -> 1]
...
唯一的Transition-state對應唯一的pdf,其下又包括多個 Transition-id,
接下來看神經(jīng)網(wǎng)絡的輸入與輸出到底是什么。這里以steps/nnet為例。追溯腳本到steps/nnet/train.sh,找到相關(guān)的命令:
...
labels_tr="ark:ali-to-pdf $alidir/final.mdl \"ark:gunzip -c $alidir/ali.*.gz |\" ark:- | ali-to-post ark:- ark:- |"
...
feats_tr="ark:copy-feats scp:$dir/train.scp ark:- |"
...
# input-dim,
get_dim_from=$feature_transform
num_fea=$(feat-to-dim "$feats_tr nnet-forward \"$get_dim_from\" ark:- ark:- |" -)
# output-dim,
num_tgt=$(hmm-info --print-args=false $alidir/final.mdl | grep pdfs | awk '{ print $NF }')
...
dnn)
utils/nnet/make_nnet_proto.py $proto_opts \
${bn_dim:+ --bottleneck-dim=$bn_dim} \
$num_fea $num_tgt $hid_layers $hid_dim >$nnet_proto
;;
從上面關(guān)鍵的幾個神經(jīng)網(wǎng)絡的訓練的準備階段可以看出,神經(jīng)網(wǎng)絡的輸入很清楚是變換后的特征向量(feats_tr),輸出是labels_tr,下面單獨運行上面的命令,來查看神經(jīng)網(wǎng)絡的輸出(target)是什么。labels_tr的生成分兩步:
ali-to-pdf: 將上面對齊文件中的transition-id轉(zhuǎn)化為對應的pdf-id;
ali-to-post: 根據(jù)得到的pdf-id,生成[pdf, post]對,即pdf與其對應的后驗概率。
$ ali-to-pdf final.mdl "ark:gunzip -c ali.1.gz|" ark,t:- | head -n 1
speaker001_00003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 4 440 440 440 440 440 440 440 441 442 442 442 442 38 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 92 92 93 93 93 94 94 188 188 188 188 188 188 188 188 188 189 189 189 190 446 446 446 447 447 448 448 448 448 448 448 448 448 448 448 448 448 452 452 452 453 454 454 454 454 454 454 454 371 371 371 371 371 371 372 372 372 372 372 372 372 372 372 373 373 373 458 458 459 459 459 459 459 459 459 459 460 460 460 460 460 460 460 460 460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4
觀察前兩幀,結(jié)合文章一開始,transition-id 分別為4和1,而對應的pdf均為0。對該結(jié)果再進行ali-to-post:
$ ali-to-pdf final.mdl "ark:gunzip -c ali.1.gz|" ark,t:- | head -n 1 | ali-to-post ark,t:- ark,t:-
speaker001_00003 [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] ...... [ 3 1 ] [ 3 1 ] [ 3 1 ] [ 3 1 ] [ 4 1 ] [ 440 1 ] [ 440 1 ] [ 440 1 ] [ 440 1 ] [ 440 1 ] [ 440 1 ] [ 440 1 ] [ 441 1 ] [ 442 1 ] [ 442 1 ] [ 442 1 ] [ 442 1 ] [ 38 1 ] [ 39 1 ] [ 39 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 92 1 ] [ 92 1 ]...... [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 3 1 ] [ 4 1 ]
得到pdf-id以及相應的后驗概率,這里均為1。
由此得到了訓練數(shù)據(jù)以及對應的target label。進一步來看神經(jīng)網(wǎng)絡的輸入與輸出的維度,網(wǎng)絡結(jié)構(gòu)被utils/nnet/make_nnet_proto.py寫到nnet_proto文件中,該Python腳本的兩個重要參數(shù) num_fea和num_tgt分別為神經(jīng)網(wǎng)絡的輸入與輸出的維度。其中num_fea是由feat-to-dim獲得:
$ feat-to-dim scp:../tri4b_dnn/train.scp ark,t:- | grep speaker001_00003
speaker001_00003 40
這里為fbank特征,維度為40,而在真正作為神經(jīng)網(wǎng)絡輸入時,進一步對特征向量進行的變換,從源碼steps/nnet/train.sh也可以看到splice參數(shù)(默認值為5),指定了對特征向量的變換:取對應幀前后5幀,拼成一個11幀組成的大向量(維度為440)。該部分特征變換的拓撲也被保存到final.feature_transform:
$ more final.feature_transform
<Nnet>
<Splice> 440 40
[ -5 -4 -3 -2 -1 0 1 2 3 4 5 ]
<!EndOfComponent>
...
后面在進行神經(jīng)網(wǎng)絡的訓練時會使用該拓撲對特征向量進行變換,最終的神經(jīng)網(wǎng)絡輸入維度為440。
而num_tgt的維度則是通過hmm-info獲得:
$ hmm-info final.mdl
number of phones 218
number of pdfs 1026
number of transition-ids 2834
number of transition-states 1413
$ hmm-info final.mdl | grep pdfs | awk '{ print $NF }'
1026
因此,看到神經(jīng)網(wǎng)絡的輸出維度為1026,這時查看nnet_proto:
<AffineTransform> <InputDim> 440 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.037344 <MaxNorm> 0.000000
<Sigmoid> <InputDim> 1024 <OutputDim> 1024
<AffineTransform> <InputDim> 1024 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.109375 <MaxNorm> 0.000000
<Sigmoid> <InputDim> 1024 <OutputDim> 1024
<AffineTransform> <InputDim> 1024 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.109375 <MaxNorm> 0.000000
<Sigmoid> <InputDim> 1024 <OutputDim> 1024
<AffineTransform> <InputDim> 1024 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.109375 <MaxNorm> 0.000000
<Sigmoid> <InputDim> 1024 <OutputDim> 1024
<AffineTransform> <InputDim> 1024 <OutputDim> 1026 <BiasMean> 0.000000 <BiasRange> 0.000000 <ParamStddev> 0.109322 <LearnRateCoef> 1.000000 <BiasLearnRateCoef> 0.100000
<Softmax> <InputDim> 1026 <OutputDim> 1026
這里可以看到神經(jīng)網(wǎng)絡的輸入維度有40變?yōu)?40,輸出為pdf的個數(shù)(對應HMM狀態(tài)的個數(shù))。
如果繼續(xù)追查代碼,最后可以找到單次神經(jīng)網(wǎng)絡的訓練實現(xiàn),kaldi/src/nnetbin/nnet-train-frmshuff.cc:
Perform one iteration (epoch) of Neural Network training with mini-batch Stochastic Gradient Descent. The training targets are usually pdf-posteriors, prepared by ali-to-post.
解析訓練參數(shù),配置網(wǎng)絡
讀取特征向量和target label,輸入為Matrix< BaseFloat >類型,輸出為Posterior類型,即<pdf-id, posterior>對。
// get feature / target pair,
Matrix<BaseFloat> mat = feature_reader.Value();
Posterior targets = targets_reader.Value(utt);
隨機打亂訓練數(shù)據(jù),作為神經(jīng)網(wǎng)絡輸入與期望輸出:
const CuMatrixBase<BaseFloat>& nnet_in = feature_randomizer.Value();
const Posterior& nnet_tgt = targets_randomizer.Value();
const Vector<BaseFloat>& frm_weights = weights_randomizer.Value();
前向傳播,計算估計值nnet_out
// forward pass,
nnet.Propagate(nnet_in, &nnet_out);
計算cost,這里支持交叉熵和平方差和multitask。結(jié)果為obj_diff
// evaluate objective function we've chosen,
if (objective_function == "xent") {
// gradients re-scaled by weights in Eval,
xent.Eval(frm_weights, nnet_out, nnet_tgt, &obj_diff);
} else if (objective_function == "mse") {
// gradients re-scaled by weights in Eval,
mse.Eval(frm_weights, nnet_out, nnet_tgt, &obj_diff);
}
...
根據(jù)誤差反向傳播,更新參數(shù)
if (!crossvalidate) {
// back-propagate, and do the update,
nnet.Backpropagate(obj_diff, NULL);
}
完成一次參數(shù)更新,繼續(xù)迭代。
total_frames += nnet_in.NumRows(),
最終由調(diào)用該部分代碼的/steps/nnet/train_scheduler.sh指定最大迭代次數(shù)max_iters或accept訓練的模型,
accepting: the loss was better, or we had fixed learn-rate, or we had fixed epoch-number
在進行DNN訓練前:
訓練GMM-HMM模型,聚類,并得到音素(或狀態(tài))的后驗。
對語音數(shù)據(jù)進行對齊,這里得到語音文件按時間順序transition-id到幀特征向量的對應。
生成< pdf-id, posterior > 對作為訓練目標target
語音文件特征向量進行變換,這里取前后5幀,拼成一個11幀維度更高的特征向量,作為神經(jīng)網(wǎng)絡輸入。
神經(jīng)網(wǎng)絡輸入變換后的特征向量,通過前向傳播,經(jīng)Softmax層,得到該幀特征對應每個pdf的概率預測值。
對每個pdf根據(jù)< pdf-id, posterior >查到目標后驗概率,與預測值求誤差
反向傳播更新參數(shù)。
不斷迭代,直到達到最大訓練次數(shù),或模型經(jīng)過cross validation得到較低的誤差(loss)停止訓練。
解碼時,用訓練好的DNN-HMM模型,輸入幀的特征向量,得到該幀為每個狀態(tài)(對應pdf)的概率。
其中 x_t 對應t時刻的觀測值(輸入),q_t=s_i 即表示t時刻的狀態(tài)為 s_i。p(x_t) 為該觀測值出現(xiàn)概率,對結(jié)果影響不大。p(s_i) 為 s_i 出現(xiàn)的先驗概率,可以從語料庫中統(tǒng)計得到。最終得到了與GMM相同的目的:HMM狀態(tài)到觀測幀特征向量的輸出概率。就有了下面的示意圖:
雷鋒網(wǎng)相關(guān)閱讀:
手把手教你如何用 TensorFlow 實現(xiàn)基于 DNN 的文本分類
深度神經(jīng)網(wǎng)絡發(fā)展歷程全回顧:如何加速DNN運算?
雷峰網(wǎng)版權(quán)文章,未經(jīng)授權(quán)禁止轉(zhuǎn)載。詳情見轉(zhuǎn)載須知。