丁香五月天婷婷久久婷婷色综合91|国产传媒自偷自拍|久久影院亚洲精品|国产欧美VA天堂国产美女自慰视屏|免费黄色av网站|婷婷丁香五月激情四射|日韩AV一区二区中文字幕在线观看|亚洲欧美日本性爱|日日噜噜噜夜夜噜噜噜|中文Av日韩一区二区

您正在使用IE低版瀏覽器,為了您的雷峰網(wǎng)賬號(hào)安全和更好的產(chǎn)品體驗(yàn),強(qiáng)烈建議使用更快更安全的瀏覽器
此為臨時(shí)鏈接,僅用于文章預(yù)覽,將在時(shí)失效
人工智能開發(fā)者 正文
發(fā)私信給AI研習(xí)社
發(fā)送

0

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

本文作者: AI研習(xí)社 2017-06-13 11:05
導(dǎo)語:史上最輕松愉快的傅里葉教程。

雷鋒網(wǎng)按:本文作者韓昊,原載于知乎專欄,雷鋒網(wǎng)已獲授權(quán)。文章上半部分詳見:鏈接。

上一篇文章發(fā)出來之后,為了掐死我,大家真是很下工夫啊,有拿給姐姐看的,有拿給妹妹看的,還有拿給女朋友看的,就是為了聽到一句“完全看不懂啊”。幸虧我留了個(gè)心眼,不然就真的像標(biāo)題配圖那樣了。我的文章題目是,如果看了這篇文章你“還”不懂就過來掐死我,潛臺(tái)詞就是在你學(xué)了,但是沒學(xué)明白的情況下看了還是不懂,才過來掐死我。

另外,想跟很多人抱歉,因?yàn)樵u(píng)論太多了,時(shí)間有限,不能給每個(gè)人回復(fù),還望大家諒解。但是很感謝一直在評(píng)論區(qū)幫忙解答讀者問題的各位,就不一一@了。

這里鄭重感謝大連海事大學(xué)的吳楠老師,一位學(xué)識(shí)淵博、備課縝密、但授課不拘一格的年輕教師!當(dāng)時(shí)大三他教我通信原理,但是他先用了4結(jié)課幫我們復(fù)習(xí)了很多信號(hào)與系統(tǒng)的基本概念,那個(gè)用樂譜代表頻域的概念就是他講的,一下子讓我對(duì)這門課豁然開朗,才有了今天的這篇文章。

————————————今天的定場詩有點(diǎn)長——————————

下面繼續(xù)開始我們無節(jié)操的旅程:

三、傅里葉級(jí)數(shù)(Fourier Series)的相位譜

上次的關(guān)鍵詞是:從側(cè)面看。這次的關(guān)鍵詞是:從下面看。

在第二課最開始,我想先回答很多人的一個(gè)問題:傅里葉分析究竟是干什么用的?這段相對(duì)比較枯燥,已經(jīng)知道了的同學(xué)可以直接跳到下一個(gè)分割線。

先說一個(gè)最直接的用途。無論聽廣播還是看電視,我們一定對(duì)一個(gè)詞不陌生——頻道。頻道頻道,就是頻率的通道,不同的頻道就是將不同的頻率作為一個(gè)通道來進(jìn)行信息傳輸。下面大家嘗試一件事:

先在紙上畫一個(gè)sin(x),不一定標(biāo)準(zhǔn),意思差不多就行。不是很難吧。

好,接下去畫一個(gè)sin(3x)+sin(5x)的圖形。

別說標(biāo)準(zhǔn)不標(biāo)準(zhǔn)了,曲線什么時(shí)候上升什么時(shí)候下降你都不一定畫的對(duì)吧?

好,畫不出來不要緊,我把sin(3x)+sin(5x)的曲線給你,但是前提是你不知道這個(gè)曲線的方程式,現(xiàn)在需要你把sin(5x)給我從圖里拿出去,看看剩下的是什么。這基本是不可能做到的。

但是在頻域呢?則簡單的很,無非就是幾條豎線而已。

所以很多在時(shí)域看似不可能做到的數(shù)學(xué)操作,在頻域相反很容易。這就是需要傅里葉變換的地方。尤其是從某條曲線中去除一些特定的頻率成分,這在工程上稱為濾波,是信號(hào)處理最重要的概念之一,只有在頻域才能輕松的做到。

再說一個(gè)更重要,但是稍微復(fù)雜一點(diǎn)的用途——求解微分方程。(這段有點(diǎn)難度,看不懂的可以直接跳過這段)微分方程的重要性不用我過多介紹了。各行各業(yè)都用的到。但是求解微分方程卻是一件相當(dāng)麻煩的事情。因?yàn)槌艘?jì)算加減乘除,還要計(jì)算微分積分。而傅里葉變換則可以讓微分和積分在頻域中變?yōu)槌朔ê统?,大學(xué)數(shù)學(xué)瞬間變小學(xué)算術(shù)有沒有。

傅里葉分析當(dāng)然還有其他更重要的用途,我們隨著講隨著提。

下面我們繼續(xù)說相位譜:

通過時(shí)域到頻域的變換,我們得到了一個(gè)從側(cè)面看的頻譜,但是這個(gè)頻譜并沒有包含時(shí)域中全部的信息。因?yàn)轭l譜只代表每一個(gè)對(duì)應(yīng)的正弦波的振幅是多少,而沒有提到相位?;A(chǔ)的正弦波A.sin(wt+θ)中,振幅,頻率,相位缺一不可,不同相位決定了波的位置,所以對(duì)于頻域分析,僅僅有頻譜(振幅譜)是不夠的,我們還需要一個(gè)相位譜。那么這個(gè)相位譜在哪呢?我們看下圖,這次為了避免圖片太混論,我們用7個(gè)波疊加的圖。

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

鑒于正弦波是周期的,我們需要設(shè)定一個(gè)用來標(biāo)記正弦波位置的東西。在圖中就是那些小紅點(diǎn)。小紅點(diǎn)是距離頻率軸最近的波峰,而這個(gè)波峰所處的位置離頻率軸有多遠(yuǎn)呢?為了看的更清楚,我們將紅色的點(diǎn)投影到下平面,投影點(diǎn)我們用粉色點(diǎn)來表示。當(dāng)然,這些粉色的點(diǎn)只標(biāo)注了波峰距離頻率軸的距離,并不是相位。

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

這里需要糾正一個(gè)概念:時(shí)間差并不是相位差。如果將全部周期看作2Pi或者360度的話,相位差則是時(shí)間差在一個(gè)周期中所占的比例。我們將時(shí)間差除周期再乘2Pi,就得到了相位差。

在完整的立體圖中,我們將投影得到的時(shí)間差依次除以所在頻率的周期,就得到了最下面的相位譜。所以,頻譜是從側(cè)面看,相位譜是從下面看。下次偷看女生裙底被發(fā)現(xiàn)的話,可以告訴她:“對(duì)不起,我只是想看看你的相位譜。”

注意到,相位譜中的相位除了0,就是Pi。因?yàn)閏os(t+Pi)=-cos(t),所以實(shí)際上相位為Pi的波只是上下翻轉(zhuǎn)了而已。對(duì)于周期方波的傅里葉級(jí)數(shù),這樣的相位譜已經(jīng)是很簡單的了。另外值得注意的是,由于cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人為定義相位譜的值域?yàn)?-pi,pi],所以圖中的相位差均為Pi。

最后來一張大集合:

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

四、傅里葉變換(Fourier Transformation)

相信通過前面三章,大家對(duì)頻域以及傅里葉級(jí)數(shù)都有了一個(gè)全新的認(rèn)識(shí)。但是文章在一開始關(guān)于鋼琴琴譜的例子我曾說過,這個(gè)栗子是一個(gè)公式錯(cuò)誤,但是概念典型的例子。所謂的公式錯(cuò)誤在哪里呢?

傅里葉級(jí)數(shù)的本質(zhì)是將一個(gè)周期的信號(hào)分解成無限多分開的(離散的)正弦波,但是宇宙似乎并不是周期的。曾經(jīng)在學(xué)數(shù)字信號(hào)處理的時(shí)候?qū)戇^一首打油詩:

往昔連續(xù)非周期,

回憶周期不連續(xù),

任你ZT、DFT,

還原不回去。

(請(qǐng)無視我渣一樣的文學(xué)水平……)

在這個(gè)世界上,有的事情一期一會(huì),永不再來,并且時(shí)間始終不曾停息地將那些刻骨銘心的往昔連續(xù)的標(biāo)記在時(shí)間點(diǎn)上。但是這些事情往往又成為了我們格外寶貴的回憶,在我們大腦里隔一段時(shí)間就會(huì)周期性的蹦出來一下,可惜這些回憶都是零散的片段,往往只有最幸福的回憶,而平淡的回憶則逐漸被我們忘卻。因?yàn)?,往昔是一個(gè)連續(xù)的非周期信號(hào),而回憶是一個(gè)周期離散信號(hào)。

是否有一種數(shù)學(xué)工具將連續(xù)非周期信號(hào)變換為周期離散信號(hào)呢?抱歉,真沒有。

比如傅里葉級(jí)數(shù),在時(shí)域是一個(gè)周期且連續(xù)的函數(shù),而在頻域是一個(gè)非周期離散的函數(shù)。這句話比較繞嘴,實(shí)在看著費(fèi)事可以干脆回憶第一章的圖片。

而在我們接下去要講的傅里葉變換,則是將一個(gè)時(shí)域非周期的連續(xù)信號(hào),轉(zhuǎn)換為一個(gè)在頻域非周期的連續(xù)信號(hào)。

算了,還是上一張圖方便大家理解吧:

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

或者我們也可以換一個(gè)角度理解:傅里葉變換實(shí)際上是對(duì)一個(gè)周期無限大的函數(shù)進(jìn)行傅里葉變換。

所以說,鋼琴譜其實(shí)并非一個(gè)連續(xù)的頻譜,而是很多在時(shí)間上離散的頻率,但是這樣的一個(gè)貼切的比喻真的是很難找出第二個(gè)來了。

因此在傅里葉變換在頻域上就從離散譜變成了連續(xù)譜。那么連續(xù)譜是什么樣子呢?

你見過大海么?

為了方便大家對(duì)比,我們這次從另一個(gè)角度來看頻譜,還是傅里葉級(jí)數(shù)中用到最多的那幅圖,我們從頻率較高的方向看。

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

以上是離散譜,那么連續(xù)譜是什么樣子呢?

盡情的發(fā)揮你的想象,想象這些離散的正弦波離得越來越近,逐漸變得連續(xù)……

直到變得像波濤起伏的大海:

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

很抱歉,為了能讓這些波浪更清晰的看到,我沒有選用正確的計(jì)算參數(shù),而是選擇了一些讓圖片更美觀的參數(shù),不然這圖看起來就像屎一樣了。

不過通過這樣兩幅圖去比較,大家應(yīng)該可以理解如何從離散譜變成了連續(xù)譜的了吧?原來離散譜的疊加,變成了連續(xù)譜的累積。所以在計(jì)算上也從求和符號(hào)變成了積分符號(hào)。

不過,這個(gè)故事還沒有講完,接下去,我保證讓你看到一幅比上圖更美麗壯觀的圖片,但是這里需要介紹到一個(gè)數(shù)學(xué)工具才能然故事繼續(xù),這個(gè)工具就是——

五、宇宙耍帥第一公式:歐拉公式

虛數(shù)i這個(gè)概念大家在高中就接觸過,但那時(shí)我們只知道它是-1的平方根,可是它真正的意義是什么呢?

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

這里有一條數(shù)軸,在數(shù)軸上有一個(gè)紅色的線段,它的長度是1。當(dāng)它乘以3的時(shí)候,它的長度發(fā)生了變化,變成了藍(lán)色的線段,而當(dāng)它乘以-1的時(shí)候,就變成了綠色的線段,或者說線段在數(shù)軸上圍繞原點(diǎn)旋轉(zhuǎn)了180度。

我們知道乘-1其實(shí)就是乘了兩次 i使線段旋轉(zhuǎn)了180度,那么乘一次 i 呢——答案很簡單——旋轉(zhuǎn)了90度。

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

同時(shí),我們獲得了一個(gè)垂直的虛數(shù)軸。實(shí)數(shù)軸與虛數(shù)軸共同構(gòu)成了一個(gè)復(fù)數(shù)的平面,也稱復(fù)平面。這樣我們就了解到,乘虛數(shù)i的一個(gè)功能——旋轉(zhuǎn)。

現(xiàn)在,就有請(qǐng)宇宙第一耍帥公式歐拉公式隆重登場——

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

這個(gè)公式在數(shù)學(xué)領(lǐng)域的意義要遠(yuǎn)大于傅里葉分析,但是乘它為宇宙第一耍帥公式是因?yàn)樗奶厥庑问健?dāng)x等于Pi的時(shí)候。

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

經(jīng)常有理工科的學(xué)生為了跟妹子表現(xiàn)自己的學(xué)術(shù)功底,用這個(gè)公式來給妹子解釋數(shù)學(xué)之美:”石榴姐你看,這個(gè)公式里既有自然底數(shù)e,自然數(shù)1和0,虛數(shù)i還有圓周率pi,它是這么簡潔,這么美麗??!“但是姑娘們心里往往只有一句話:”臭屌絲……“

這個(gè)公式關(guān)鍵的作用,是將正弦波統(tǒng)一成了簡單的指數(shù)形式。我們來看看圖像上的涵義:

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

歐拉公式所描繪的,是一個(gè)隨著時(shí)間變化,在復(fù)平面上做圓周運(yùn)動(dòng)的點(diǎn),隨著時(shí)間的改變,在時(shí)間軸上就成了一條螺旋線。如果只看它的實(shí)數(shù)部分,也就是螺旋線在左側(cè)的投影,就是一個(gè)最基礎(chǔ)的余弦函數(shù)。而右側(cè)的投影則是一個(gè)正弦函數(shù)。

關(guān)于復(fù)數(shù)更深的理解,大家可以參考:

復(fù)數(shù)的物理意義是什么?

這里不需要講的太復(fù)雜,足夠讓大家理解后面的內(nèi)容就可以了。

六、指數(shù)形式的傅里葉變換

有了歐拉公式的幫助,我們便知道:正弦波的疊加,也可以理解為螺旋線的疊加在實(shí)數(shù)空間的投影。而螺旋線的疊加如果用一個(gè)形象的栗子來理解是什么呢?

光波

高中時(shí)我們就學(xué)過,自然光是由不同顏色的光疊加而成的,而最著名的實(shí)驗(yàn)就是牛頓師傅的三棱鏡實(shí)驗(yàn):

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

所以其實(shí)我們?cè)诤茉缇徒佑|到了光的頻譜,只是并沒有了解頻譜更重要的意義。

但不同的是,傅里葉變換出來的頻譜不僅僅是可見光這樣頻率范圍有限的疊加,而是頻率從0到無窮所有頻率的組合。

這里,我們可以用兩種方法來理解正弦波:

第一種前面已經(jīng)講過了,就是螺旋線在實(shí)軸的投影。

另一種需要借助歐拉公式的另一種形式去理解:

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

將以上兩式相加再除2,得到:

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

這個(gè)式子可以怎么理解呢?

我們剛才講過,e^(it)可以理解為一條逆時(shí)針旋轉(zhuǎn)的螺旋線,那么e^(-it)則可以理解為一條順時(shí)針旋轉(zhuǎn)的螺旋線。而cos(t)則是這兩條旋轉(zhuǎn)方向不同的螺旋線疊加的一半,因?yàn)檫@兩條螺旋線的虛數(shù)部分相互抵消掉了!

舉個(gè)例子的話,就是極化方向不同的兩束光波,磁場抵消,電場加倍。

這里,逆時(shí)針旋轉(zhuǎn)的我們稱為正頻率,而順時(shí)針旋轉(zhuǎn)的我們稱為負(fù)頻率(注意不是復(fù)頻率)。

好了,剛才我們已經(jīng)看到了大海——連續(xù)的傅里葉變換頻譜,現(xiàn)在想一想,連續(xù)的螺旋線會(huì)是什么樣子:

想象一下再往下翻:

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

是不是很漂亮?

你猜猜,這個(gè)圖形在時(shí)域是什么樣子?

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

哈哈,是不是覺得被狠狠扇了一個(gè)耳光。數(shù)學(xué)就是這么一個(gè)把簡單的問題搞得很復(fù)雜的東西。

順便說一句,那個(gè)像大海螺一樣的圖,為了方便觀看,我僅僅展示了其中正頻率的部分,負(fù)頻率的部分沒有顯示出來。

如果你認(rèn)真去看,海螺圖上的每一條螺旋線都是可以清楚的看到的,每一條螺旋線都有著不同的振幅(旋轉(zhuǎn)半徑),頻率(旋轉(zhuǎn)周期)以及相位。而將所有螺旋線連成平面,就是這幅海螺圖了。

好了,講到這里,相信大家對(duì)傅里葉變換以及傅里葉級(jí)數(shù)都有了一個(gè)形象的理解了,我們最后用一張圖來總結(jié)一下:

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

好了,傅里葉的故事終于講完了,下面來講講我的故事:

這篇文章第一次被寫下來的地方你們絕對(duì)猜不到在哪,是在一張高數(shù)考試的卷子上。當(dāng)時(shí)為了刷分,我重修了高數(shù)(上),但是后來時(shí)間緊壓根沒復(fù)習(xí),所以我就抱著裸考的心態(tài)去了考場。但是到了考場我突然意識(shí)到,無論如何我都不會(huì)比上次考的更好了,所以干脆寫一些自己對(duì)于數(shù)學(xué)的想法吧。于是用了一個(gè)小時(shí)左右的時(shí)間在試卷上洋洋灑灑寫了本文的第一草稿。

你們猜我的了多少分?

6分

沒錯(cuò),就是這個(gè)數(shù)字。而這6分的成績是因?yàn)樽詈笪覍?shí)在無聊,把選擇題全部填上了C,應(yīng)該是中了兩道,得到了這寶貴的6分。說真的,我很希望那張卷子還在,但是應(yīng)該不太可能了。

那么你們猜猜我第一次信號(hào)與系統(tǒng)考了多少分呢?

45分

沒錯(cuò),剛剛夠參加補(bǔ)考的。但是我心一橫沒去考,決定重修。因?yàn)槟莻€(gè)學(xué)期在忙其他事情,學(xué)習(xí)真的就拋在腦后了。但是我知道這是一門很重要的課,無論如何我要吃透它。說真的,信號(hào)與系統(tǒng)這門課幾乎是大部分工科課程的基礎(chǔ),尤其是通信專業(yè)。

在重修的過程中,我仔細(xì)分析了每一個(gè)公式,試圖給這個(gè)公式以一個(gè)直觀的理解。雖然我知道對(duì)于研究數(shù)學(xué)的人來說,這樣的學(xué)習(xí)方法完全沒有前途可言,因?yàn)殡S著概念愈加抽象,維度越來越高,這種圖像或者模型理解法將完全喪失作用。但是對(duì)于一個(gè)工科生來說,足夠了。

后來來了德國,這邊學(xué)校要求我重修信號(hào)與系統(tǒng)時(shí),我徹底無語了。但是沒辦法,德國人有時(shí)對(duì)中國人就是有種藐視,覺得你的教育不靠譜。所以沒辦法,再來一遍吧。

這次,我考了滿分,而及格率只有一半。

老實(shí)說,數(shù)學(xué)工具對(duì)于工科生和對(duì)于理科生來說,意義是完全不同的。工科生只要理解了,會(huì)用,會(huì)查,就足夠了。但是很多高校卻將這些重要的數(shù)學(xué)課程教給數(shù)學(xué)系的老師去教。這樣就出現(xiàn)一個(gè)問題,數(shù)學(xué)老師講得天花亂墜,又是推理又是證明,但是學(xué)生心里就只有一句話:學(xué)這貨到底干嘛用的?

缺少了目標(biāo)的教育是徹底的失敗。

在開始學(xué)習(xí)一門數(shù)學(xué)工具的時(shí)候,學(xué)生完全不知道這個(gè)工具的作用,現(xiàn)實(shí)涵義。而教材上有只有晦澀難懂,定語就二十幾個(gè)字的概念以及看了就眼暈的公式。能學(xué)出興趣來就怪了!

好在我很幸運(yùn),遇到了大連海事大學(xué)的吳楠老師。他的課全程來看是兩條線索,一條從上而下,一條從下而上。先講本門課程的意義,然后指出這門課程中會(huì)遇到哪樣的問題,讓學(xué)生知道自己學(xué)習(xí)的某種知識(shí)在現(xiàn)實(shí)中扮演的角色。然后再從基礎(chǔ)講起,梳理知識(shí)樹,直到延伸到另一條線索中提出的問題,完美的銜接在一起!

這樣的教學(xué)模式,我想才是大學(xué)里應(yīng)該出現(xiàn)的。

最后,寫給所有給我點(diǎn)贊并留言的同學(xué)。真的謝謝大家的支持,也很抱歉不能一一回復(fù)。因?yàn)橹鯇诘牧粞砸鸫渭虞d,為了看到最后一條要點(diǎn)很多次加載。當(dāng)然我都堅(jiān)持看完了,只是沒辦法一一回復(fù)。

本文只是介紹了一種對(duì)傅里葉分析新穎的理解方法,對(duì)于求學(xué),還是要踏踏實(shí)實(shí)弄清楚公式和概念,學(xué)習(xí),真的沒有捷徑。但至少通過本文,我希望可以讓這條漫長的路變得有意思一些。

最后,祝大家都能在學(xué)習(xí)中找到樂趣?!?/p>

謹(jǐn)以此文獻(xiàn)給大連海事大學(xué)的吳楠老師,柳曉鳴老師,王新年老師以及張晶泊老師。

雷鋒網(wǎng)相關(guān)閱讀:

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(上)

一文詳解神經(jīng)網(wǎng)絡(luò) BP 算法原理及 Python 實(shí)現(xiàn)

雷峰網(wǎng)版權(quán)文章,未經(jīng)授權(quán)禁止轉(zhuǎn)載。詳情見轉(zhuǎn)載須知

如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧(下)

分享:
相關(guān)文章

編輯

聚焦數(shù)據(jù)科學(xué),連接 AI 開發(fā)者。更多精彩內(nèi)容,請(qǐng)?jiān)L問:yanxishe.com
當(dāng)月熱門文章
最新文章
請(qǐng)?zhí)顚懮暾?qǐng)人資料
姓名
電話
郵箱
微信號(hào)
作品鏈接
個(gè)人簡介
為了您的賬戶安全,請(qǐng)驗(yàn)證郵箱
您的郵箱還未驗(yàn)證,完成可獲20積分喲!
請(qǐng)驗(yàn)證您的郵箱
立即驗(yàn)證
完善賬號(hào)信息
您的賬號(hào)已經(jīng)綁定,現(xiàn)在您可以設(shè)置密碼以方便用郵箱登錄
立即設(shè)置 以后再說