10
本文作者: 黑匣 | 2015-12-23 12:18 |
隨著Google、Microsoft和Facebook等巨頭的大力投入,深度學習正在超越機器學習,人工智能來勢兇猛。那么,如今人工智能最熱門的技術趨勢是什么?
黑匣認為,復雜神經網絡、LSTMs(長短期記憶網絡)、注意力模型(Attention Models)等十大趨勢將塑造人工智能未來的技術格局。
感知和翻譯等大多數神經網絡的架構正變得越來越復雜,遠非此前簡單的前饋神經網絡或卷積神經網絡所能比。特別需要注意的是,神經網絡正與不同的技術(如LSTMs、卷積、自定義目標函數等)相混合。
神經網絡是多數深度學習項目的根基。深度學習基于人腦結構,一層層互相連接的人工模擬神經元模仿大腦的行為,處理視覺和語言等復雜問題。這些人工神經網絡可以收集信息,也可以對其做出反應。它們能對事物的外形和聲音做出解釋,還可以自行學習與工作。
但這一切都需要極高的計算能力。早在 80 年代初期,Geoffrey Hinton和他的同事們就開始研究深度學習。然而彼時電腦還不夠快,不足以處理有關神經網絡的這些龐大的數據。當時AI研究的普遍方向也與他們相反,人們都在尋找捷徑,直接模擬出行為而不是模仿大腦的運作。
隨著計算能力的提升和算法的改進,今天,神經網絡和深度學習已經成為人工智能領域最具吸引力的流派。這些神經網絡還在變得更復雜,當年“谷歌大腦”團隊最開始嘗試“無監(jiān)督學習”時,就動用了1.6萬多臺微處理器,創(chuàng)建了一個有數十億連接的神經網絡,在一項實驗中觀看了千萬數量級的YouTube圖像。
當你閱讀本文時,你是在理解前面詞語的基礎上來理解每個詞語的。你的思想具有連續(xù)性,你不會丟棄已知信息而從頭開始思考。傳統神經網絡的一大缺陷便是無法做到這一點,而遞歸神經網絡(RNN)能夠解決這一問題。
RNN擁有循環(huán)結構,可以持續(xù)保存信息。過去幾年里,RNN在語音識別和翻譯等許多問題上取得了難以置信的成功,而成功的關鍵在于一種特殊的RNN——長短期記憶網絡(LSTMs)。
普通的RNN可以學會預測“the clouds are in the sky”中最后一個單詞,但難以學會預測“I grew up in France… I speak fluent French.”中最后一個詞。相關信息(clouds、France)和預測位置(sky、French)的間隔越大,神經網絡就越加難以學習連接信息。這被稱為是“長期依賴關系”問題。
(長期依賴問題 | 圖片來源:CSDN)
“注意力”是指神經網絡在執(zhí)行任務時知道把焦點放在何處。我們可以讓神經網絡在每一步都從更大的信息集中挑選信息作為輸入。
例如,當神經網絡為一張圖片生成標題時,它可以挑選圖像的關鍵部分作為輸入。
神經圖靈機(Neural Turing Machine)就是研究者們在硅片中重現人類大腦短期記憶的嘗試。它的背后是一種特殊類型的神經網絡,它們可以適應與外部存儲器共同工作,這使得神經網絡可以存儲記憶,還能在此后檢索記憶并執(zhí)行一些有邏輯性的任務。
(模仿人類短期工作記憶的神經圖靈機 | 圖片來源:arXiv)
卷積神經網絡(CNN)最早出現在計算機視覺中,但現在許多自然語言處理(NLP)系統也會使用。LSTMs與遞歸神經網絡深度學習最早出現在NLP中,但現在也被納入計算機視覺神經網絡。
此外,計算機視覺與NLP的交匯仍然擁有無限前景。想象一下程序為美劇自動嵌入中文字幕的場景吧。
多個團隊以不同方法大幅壓縮了訓練一個良好模型所需的素材體量,這些方法包括二值化、固定浮點數、迭代修剪和精細調優(yōu)步驟等。
雖然NIPS 2015上沒有什么強化學習(reinforcement learning)的重要成果,但“深度強化學習”研討會還是展現了深度神經網絡和強化學習相結合的前景。
在“端對端”(end-to-end)機器人等領域出現了令人激動的進展,現在機器人已經可以一起運用深度和強化學習,從而將原始感官數據直接轉化為實際動作驅動。我們正在超越“分類”等簡單工作,嘗試將“計劃”與“行動”納入方程。還有大量工作需要完成,但早期的工作已經使人感到興奮。
批標準化(batch normalization)現在被視作評價一個神經網絡工具包的部分標準,在NIPS 2015 上被不斷提及。
創(chuàng)造新的神經網絡方法需要研究者,還需要能將它們迅速付諸實踐的方法。谷歌的TensorFlow是少數能夠做到這些的庫:使用Python 或 C++等主流編程語言,研究者可以迅速創(chuàng)作新的網絡拓撲圖,接著在單一或多個設備(包括移動設備)上進行測試。
雷峰網原創(chuàng)文章,未經授權禁止轉載。詳情見轉載須知。